
The total cross section at the LHC†

We do not have the ability to perform precise calculations of long-range strong
interaction effects, because the effective QCD coupling is not small and so we
cannot use perturbation theory. Nevertheless, I will show that we know a lot,
though not nearly enough. As a measure of our lack of knowledge, the best
prediction for the total cross section at LHC energy is:

σLHC = 125 ± 25 mb

This set of lectures is about the long-range strong interaction at high energy.
Much of what I know about this subject comes from my long collaboration
with Sandy Donnachie. A few years ago we wrote a book about it, together
with colleagues from Heidelberg University: Sandy Donnachie, Günter Dosch,
Peter Landshoff and Otto Nachtmann, Pomeron physics and QCD, Cambridge
University Press (2002). Most of the material in these lectures is taken from
the book, and references to papers and data may be found in it.

†Lectures at School on QCD, Calabria, July 2007



Regge theory

Because we do not have the ability to perform precise calculations of long-
range strong interaction effects, much of what we know comes from looking at
experimental data, and so these lectures contain rather more data plots than
equations. In order to use what understanding we have of the theory and
apply it to the data, we have to introduce extra assumptions. I will show you
that, often, making the simplest possible assumptions turns out to be very
successful.

The basic theory is known as Regge theory. It relates together a large number
of different reactions. Among those that I will discuss are

• Hadron-hadron total cross sections

• Hadron-hadron elastic scattering

• Diffraction dissociation

• Photon and lepton induced reactions

I will show you that we know a lot, but of course not nearly enough. As
a measure of our lack of knowledge, the best prediction for the total cross
section at LHC energy is:

σLHC = 125 ± 25 mb

By this I mean that 15 years ago I would have predicted 100 mb with some
confidence, and it is still quite likely that this will prove to be correct. But a
value as large as 150 mb is also quite possible.



History

• 1935: Yukawa predicted the existence of the pion — its
exchange generates the static strong interaction

• 1960s: Nearly everybody worked on the applications of Regge theory, which
sums the exchanges of many particles and generates the high-energy strong
interaction

• The known particles not are enough — we need to include exchange of
another object, the pomeron

• 1970s: QCD is discovered — the BFKL equation generates pomeron ex-
change as gluon exchange, but it makes total cross sections rise with energy
much faster than is observed

• early 1990s: HERA finds a sharp rise of F2(x,Q
2) at small x, apparently

described by BFKL pomeron exchange

• so there are two pomerons: soft (nonperturbative) and hard (perturbative)

• late 1990s: higher-order perturbative corrections to BFKL exchange spoil
the calculation — this problem is not yet solved, and we do not know whether
the hard pomeron is related to the BFKL equation.



Diffraction

The mathematics to study pomeron exchange is sophisticated and
similar to that used to study diffraction in optics.

And it leads to elastic scattering differential cross sections reminiscent of op-
tical diffraction:
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Elastic αα scattering at 126 GeV CM energy

But ”diffractive” processes in particle physics are more complicated than in
optics



Linear particle trajectories

Plot of spins of families of particles against their squared masses:
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• 4 degenerate familes of particles: α(t) ≈ 1
2

+ 0.9t
The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.



Regge theory

Regge theory sums the exchanges of many particles.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

s

t

P P

P P

1
3

2 4

Define
s = (P1 + P2)

2 = squared CM energy
t = (P3 − P1)

2 = squared momentum transfer

• At large s but |t| << s each trajectory α±

i (t) contributes to the amplitude

A±(s, t) ∼
∑

i

β±

i (t)Γ(−α±

i (t)) (1 ± e−iπα±

i
(t)) (s/s0)

α±

i
(t)−1

with ± according to the C-parity of the exchange. We know nothing about
the function β±

i (t), except that it is real. Γ(−α±

i (t)) has a pole when α±

i (t)

is a negative integer, but the signature factor (1 ± e−iπα±

i
(t)) vanishes when

α±

i (t) is odd/even. The signature factor is the only factor that is not real.

The mathematical formalism that is used to derive this high-energy behaviour
of a scattering amplitude was developed by Watson and Sommerfeld in the
middle of the 19th century. It starts with the partial-wave series for the am-
plitude, which is a sum over orbital angular momentum values ℓ = 0, 1, 2, . . ..
This sum is converted into an integral over ℓ, which becomes a continuous
complex variable. So the partial-wave amplitude aℓ(s) becomes a function
a(ℓ, s) and it has singularities in the complex-ℓ plane. It turns out that a
trajectory α(t) corresponds to a simple pole at ℓ = α(t). As I have indicated,
a Regge pole at this point in the complex-ℓ plane contributes a power sα(t)−1

to the high-energy behaviour of the physical amplitude.

Unfortunately, we know that simple poles are not the only singularities of
aℓ(s). It also has branch points, and we do not know enough about these
additional singularities to use them to make well-defined calculations. It is
this difficulty that brought to a halt the intense activity in Regge theory in
the 1960s, and it has still not been solved. I will discuss it in my last lecture.



Total cross sections

Optical theorem:
σTOT(s) = Im A(s, t = 0)

So each trajectory contributes a fixed power

sα(0)−1

∼ s−
1

2 for ρ, ω, f2, a2 trajectories

Experiment finds that total cross sections rise gently at large s. So if this is
caused by a Regge pole we need another trajectory with α(0) a little > 1.

• We call this the soft pomeron trajectory

• Probably it corresponds to the exchange of glueballs, though we cannot
be sure because the experimental study of the glueball spectrum is so very
difficult.



Fits to total cross sections
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• We need a pomeron trajectory with αIP (0) ≈ 1.08. It couples equally to
particles and their antiparticles.

• Note the significant discrepancy between the two Tevatron measurements

• Note also that the pomeron’s coupling to the pion is about 2
3

that to the
nucleon (quark counting rule)

It is remarkable that such a simple fit works well all the way from such low
energy to very high energies. At the lower-energy end of the plots, very little
can be produced in the final state, just a very few pions. But as the energy
increases, we cross thresholds for the production of charm, jets and much
else. The total cross-section, however, is completely smooth and seems to be
unaware of these thresholds.

When Donnachie and I first made these fits to total cross sections, the higher-
energy data from the CERN collider and the Tevatron were not available, but
our predictions based on Regge theory were successful.
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The magnitude of the pomeron’s contribution to the Kp cross sections is a
little less than to the πp: the coupling of the pomeron to a strange quark is
about 70% of that to the light quarks. The pomeron’s coupling to the pn and
p̄n amplitudes is the same as to pp and p̄p: it has the quantum numbers of
the vacuum (like the f2).
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Before the HERA measurements of the γp total cross section, predictions for
its value differed very widely. But the prediction from Regge theory proved
to be successful.



Froissart-Lukaszuk-Martin bound

At very large s

σTOT(s) <
π

m2
π

log2(s/s0)

for some unknown s0 — probably of the order of 1 GeV2.

At LHC energy, this gives σTOT < 4.3 barns

• So the bound has little to do with physics!

Note that the proof depends on the partial-wave unitarity equation

*

2

X

Xi

Im aℓ(s) = |aℓ(s)|2 + inelastic terms

so that
|aℓ(s)| < 1

• Therefore the bound applies only to hadron-hadron scattering.

Nevertheless, there is a wide belief that it applies also to photon and lepton-
induced processes. To derive the bound for these processes, one has to use
models or physical intuition. But it is far from certain that this is reliable
under the extreme conditions that will operate at very high energies.

• In principle, the photoproduction cross section might become very large at
high energy, and F2(x,Q

2) might become very large at small x.



A more stringent constraint

Obviously
σELASTIC < σTOTAL

In fact, unitarity can be used to show that even

σELASTIC < 1
2 σ

TOTAL

This is the Pumplin Bound.

Because pomeron exchange alone gives

σTOTAL ∼ sǫ ǫ ≈ 0.08

and
dσ

dt

ELASTIC∣

∣

∣

t=0
∼ s2ǫ

it violates the bound at large s.

More about this later.



Elastic scattering

Assume the pomeron trajectory is linear (like ρ, ω, f2, a2):

αIP (t) = ǫIP + α′

IP t

• I pointed out that total-cross-section data suggest the quark counting rule:
the pomeron seems to couple to the separate quarks in a hadron with a γµ

coupling (as expected if pomeron exchange is two-gluon exchange).

Aqq
IP (s, t) ∼ β̄IP (t)(ū3γ

µu1)(ū4γµu2)e
−

1

2
iπαIP (t)(α′

IP s)
αIP (t)−1

• The two-gluon-exchange model would make β̄IP (t) essentially constant:
β̄IP (t) = β2

IP

• For coupling to nucleons, we need isosinglet (sum of proton and neutron)
C = + Dirac and Pauli form factors F1(t) and F2(t). Assume they are the
same as for C = − photon exchange (this is unlikely to be quite right!).

• Then F2(t) is very small (at t = 0 it is the sum of the anomalous mag-
netic moments of the proton and neutron, 1.79 − 1.9). This means pomeron
exchange does not flip the nucleon helicity, which is found to be true.

So

dσ

dt
=

[3βIPF1(t)]
4

4π
(α′

IP s)
2(ǫIP +α′

IP
t)

βIP and ǫIP are known from σTOT

• The only free parameter is α′
IP



Fix α′ from the very-low-t data at some energy, say
√
s =53 Gev:
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• Determines α′ = 0.25 GeV−2

• Then the formula works well out to larger t at the same energy:
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It also fits well to pp and pp̄ elastic scattering data at all other available
energies.
Because F1(t) is raised to the power 4 in the formula, this gives a good test
that it is the correct form factor, but why this should be so is not understood.

Note that the curves do not include photon exchange, which contributes sig-
nificantly at very small t.



Shrinkage of the forward peak

Because the formula contains the factor exp(2α′t log(α′s)), the contribution
of pomeron exchange to the forward peak in dσ/dt becomes steeper as the
energy increases:
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Note again the discrepancy between the data from the two Tevatron experi-
ments.



πp elastic scattering

The form factor F1(t) is raised to the power 4 in the pp-scattering formula
because the pomeron couples to each of the two protons, so that [F1(t)]

2

appears in the amplitude, and one has to square the amplitude to get dσ/dt.
F1(t) is multiplied by 3 because, according to the quark counting rule, the
pomeron couples to single quarks in the proton and there are three of them.
If we want to extend the formula to πp scattering, we must replace [3F1(t)]

4

with [3F1(t)]
2 [2Fπ(t)]2, where Fπ(t) is the elastic form factor of the pion.

This has been measured:
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and so we obtain for πp scattering (at
√
s = 19.4 GeV)
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The curve has no free parameters!



Exclusive ρ photoproduction

To calculate the amplitude for γp → ρp, use vector dominance and assume
the ρ behaves like the pion.
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This calculation contains no free parameters! The data are at W = 71.7 and
94 GeV from ZEUS.

• Note that both pomeron exchange and vector-meson exchange are included
in this calculation.



pp elastic scattering at large t

For |t| greater than about 3 Gev2, the data are consistent with being energy-
independent and fit well to a simple power of t:

dσ/dt = 0.09 t−8
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d�=dt(mb GeV�2)

jtj (GeV2)
This behaviour is what is calculated from triple-gluon exchange:

It is not understood why this simple mechanism, with no higher-order per-
turbative QCD corrections and fixed couplings αS , should be what is needed.
Note, though, that if the proton wave function is such that on average its mo-
mentum is shared equally among the three quarks, the momentum transfer
carried by each gluon is only t/9 and so is quite small.

As I will explain, the data for F2(x,Q
2) suggest that there exists a second

pomeron, the hard pomeron, with intercept α(0) ≈ 1.4. If we replace the
gluons with this, we obtain a contribution that rises sharply with increasing
energy. Although it is not seen in existing data, it might well become dominant
at LHC energy, so that the large-t elastic scattering differential crosss ection
might be rather large.

Note that triple-gluon exchange is C = −1 — its contributions to the pp and
p̄p amplitudes are opposite in sign.



Smaller values of t

At smaller values of t, the pp elastic scattering data show a striking dip struc-
ture:
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(The 62 GeV data are multiplied by 10.)

It is not simple to construct an amplitude that reproduces these dips. The
phase of the contribution from single-pomeron exchange is given by the sig-
nature factor, so that at −t ≈ 1.4 GeV2 its real and imaginary parts are of
similar magnitude. In order to cancel both of these at the same value of t,
additional terms are needed. One of these is almost certainly the exchange
of two pomerons, but its phase is very different, so at least one other term
is needed. Donnachie and I suggested that this is the triple-gluon-exchange
contribution that is evident at larger values of t.

However, for pp̄ scattering this has the opposite sign, which led us to pre-
dict that for this process the dip should be absent. This was confirmed in
measurements at

√
s=53 GeV:
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Upper points p̄p

Lower points pp

A C = −1 exchange term such as triple-gluon exchange is known as an
odderon exchange term. But there is no sign in the data of odderon exchange
at t = 0.

I will discuss more about the dips later



Diffraction dissociation

This is the name given to the process

pp→ pX

with the final proton losing only a very small fraction ξ of its initial momentum
(so therefore there is a large rapidity gap)

t pp

X

Square the amplitude and sum over X:

We need the imaginary part of the big lower bubble (compare the optical
theorem). When its energy MX is large we can apply Regge theory to it and
so we get the triple-regge diagram



t t

t=0

• It is not enough just to include the triple pomeron!
A very large number of terms need to be considered:

IPIP

IP

IPIP

f2

f2IP

IP

IPf2
IP

f2IP

f2

ωIP

ω
. . .

A term (12
3 ) contributes to d2σ/dt dξ

fa
1 (t)fa

2 (t)f b
3 (0)G12

3 (t) ei(φ(α1(t))−φ(α2(t)))ξ1−α1(t)−α2(t)
(M2

s0

)α3(0)−1

φ(α(t)) =

{

−1
2πα(t) C = +1

−1
2π(α(t) − 1) C = −1.



Diffdis data

Using a combination of terms, it is not difficult to get good fits to restricted
sets of data. For example:
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Data at −t = 0.25 GeV2 plotted against ξ
from two experiments at the CERN ISR
at

√
s from 23 to 38 GeV,

with a simple triple-regge fit

However, there are other data which are much more difficult to accommodate,
for example these fixed-target data:
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1
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d2σ
dtdξ

√
s = 16 GeV√
s = 24 GeV

ξ =0.04

Notice two characteristics of these data: the cross section decreases as the
energy increases, and while a simple exponential in t fits well to the three
highest-t values at each energy, it fails to describe the lowest-t points.

• All too often, fits are made to a restricted set of data using only pomeron ex-
change, with the result that conclusions are reached that are almost certainly
wrong.



The data at higher energies present severe problems. Sadly, the UA4 data for
d2σ/dt dξ have been lost. CDF publish no data points, just their fit.

UA4 data for dσ/dt survive, that is d2σ/dt dξ integrated over a certain range
of ξ. The result of integrating the CDF fit similarly is as follows:

0.1

1

10

0 0.2 0.4 0.6 0.8 1

UA4

CDF
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546 GeV M2 > 2 ξ < 0.05

There is an obvious problem!



Deep inelastic lepton scattering

*γk

p

q

X

Define
W 2 = (p+ q)2 ν = p.q Q2 = −q2 x = Q2/(2ν)

Soft-pomeron exchange contributes a behaviour (W 2)0.08 at fixed Q2. I have
shown how this describes the data well for Q2 = 0. But the W dependence
gets steeper as Q2 increses:
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Q2 = 026.52560120250500
• At large Q2 the behaviour is about (W 2)0.4.



The theory is not well understood

Define

σ(W 2, Q2) =
4π2α2

EM

Q2
F2(x,Q

2)

Two alternative theoretical possibilities:

• A (W 2)0.4 term is there at all Q2, but at Q2 = 0 its contribution is very
small

• It is not there at Q2 = 0, but as Q2 increases it is gradually generated
through perturbative QCD evolution.

The second approach is conventional, but it has a mathematical problem, as
I will explain.

The first leads to the possibility that σ(pp) also has an s0.4 term, so that the
LHC total cross-section is big.



Simple Regge fit

Soft pomeron exchange contributes to F2(x,Q
2) at large W a term that be-

haves as (W 2)ǫ1 , withǫ1 ≈ 0.08,. This is equivalent to (1/x)ǫ1 at large 1/x,
say 1/x > 103. At smaller values of 1/x, we must add in f2 and a2 exchange,
and include a multiplicative factor in each term so as to make it go to 0
appropriately as x → 1. So to begin with let me restrict the discussion to
x < 10−3.

We have seen that soft-pomeron exchange is not enough, so Donnachie and I
added in another term which we call hard-pomeron exchange. It behaves as
(1/x)ǫ0 , and I have shown that we need ǫ0 ≈ 0.4. In order to pin down the
contribution from this term, we went through a number of steps:

(1) Take
F2(x,Q

2) = f0(Q
2)x−ǫ0 + f1(Q

2)x−ǫ1 x < 10−3

In order to get information about the unknown functions f0(Q
2) and f1(Q

2),
choose a value for ǫ0 somewhat less than 0.4 and another somewhat greater.
Then fit the available data at each Q2 at each Q2. This gives these outputs
for the two functions:
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f0(Q2)
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0.1 1 10 100Q2 (GeV2)
f1(Q2)

The black points are for ǫ0 = 0.36, and the white points ǫ0 = 0.5.

In each case, f0(Q
2) rises steadily with Q2, while f1(Q

2) either goes to a
constant or rises to a peak and then slowly decreases.



(2) This suggests parametrisations of f0(Q
2) and f1(Q

2). Current conserva-
tion implies that that near Q2 = 0 at fixed W , F2(x,Q

2) vanishes like Q2.
Therefore fi(Q

2) ∼ (Q2)1+ǫi . Take

f0(Q
2) = A0

( Q2

1 +Q2/Q2
0

)1+ǫ0
(1 +Q2/Q2

0)
ǫ0/2

f1(Q
2) = A1

( Q2

1 +Q2/Q2
1

)1+ǫ1

For simplicity, this choice makes f1(Q
2) go to a constant at large Q2.

Although its contribution for x < 0.001 is fairly small, we include also an
f2, a2 exchange term, that is we add

fRQ
2)x−ǫR ǫR = −0.4525

and use a similar parametrisation for f2(Q
2) to that for f1(Q

2):

fR(Q2) = AR

( Q2

1 +Q2/Q2
R

)1+ǫR

(3) Now go back and again fit the data for x < 0.001, this time with ǫ0 as one
of the free parameters. Include also the photoproduction data and restrict to
W > 6 GeV. This gives

ǫ0 = 0.41 Q0 = 2.9 GeV Q1 = 770 MeV QR = 465 MeV

A0 = 0.0022 A1 = 0.60 AR = 1.2

with χ2 = 0.95 per data point (190 data points).

(The values of A1, A2 are determined largely by the real-photon data.)
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Parametrisations in which f0(Q
2) falls slowly at large Q2, for example like

1/Q, also describe the data well. If only for this reason, the error on the
determination of ǫ0 is quite large, say ǫ0 = 0.41 ± 0.06.



(4) There are data at larger Q2 but at larger x. Introduce powers of (1 − x)
in each term given by the dimensional counting rule. This is not correct, but
better than nothing, and using the values of the parameters that have already
been determined by the data for x < 0.001 they give surprisingly good fits
out to very large Q2:
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Charm

The data for the charm contribution F c
2 (x,Q2) display a very interesting sim-

plicity. Even at small Q2, they agree well with a fixed power of 1/x close to
0.4:
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The lines are just 2/5 of the hard-pomeron contribution to the complete
F2(x,Q

2). The factor 2/5 suggests that the coupling of the hard pomeron
to the c quark has the same strength as to the light quarks. The data do not
allow more than an extremely small contribution from soft-pomeron exchange.

So only the hard pomeron couples to charm, a result that I find surprising. It
seems to be true even at Q2 = 0:
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Perturbative QCD

Perturbative QCD and Regge theory have to live together.

The singlet DGLAP eqation is:

∂

∂t
u(x,Q2) =

∫ 1

x

dzP(z, αs(Q
2))u(x/z,Q2)

u(x,Q2) =

(

q(x,Q2)
g(x,Q2)

)

.

It simplifies if we Mellin transform with respect to x. That is, define

u(N,Q2) =

∫ 1

0

dxxN−1u(x,Q2)

P(N,αs(Q
2)) =

∫ 1

0

dz zNP(z, αs(Q
2)).

Then
∂

∂t
u(N,Q2) = P(N,αs(Q

2))u(N,Q2).

If u(x,Q2) ∼ f(Q2)x−ǫ at small x, then u(N,Q2) has a pole

f(Q2)

N − ǫ

Insert this in the DGLAP equation. The pole singularities on the two sides
of the equation must balance as N → ǫ0 :

∂

∂t
f(Q2) = P(N = ǫ, αs(Q

2)) f(Q2).

For hard-pomeron exchange, with ǫ ≈ 0.4, expand the matrix P(ǫ, αs) in
powers of αs. This is not valid for soft-pomeron exchange, ǫ ≈ 0.08, because
the elements of P are singular at N = 0.

• This is a problem with all applications of pQCD to the evolution of F2(x,Q
2),

though usually it is a problem that is hidden.



To solve the differential equation, we need initial conditions at some Q2, eg
Q2 = 20 Gev2. We saw that for F c

2 (x,Q2) soft-pomeron exchange is extremely
small. So pQCD suggests that this is true also for g(x,Q2).
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The upper curves come from the fit to the data that I have described. The
lower curves are the solution to the DGLAP equation, using values of ΛQCD
similar to what are usually accepted:

ΛLO = 140 MeV ΛNLO = 330 MeV

Note that the DGLAP equation is supposed to be valid only for large Q2;
evidently this means Q2 greater than about 5 GeV2. It is interesting that the
LO and NLO results are not very different.

It is interesting also that the upper curves behave as a power of Q2 at largeQ2,
because that is how we chose to parametrise f0(Q

2). But the outputs from the
DGLAP calculations rather behave as power of log(Q2). Numerically, they
are almost identical over a very large range of Q2 values.



Because the gluon density is dominated at all Q2 by hard pomeron exchange
alone, that is it behaves approximately as x−0.4 for all Q2, it is rather larger
than is conventionally supposed, particularly at small Q2:
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Regge factorisation

For each of the separate exchanges hardpom, softpom and reggeon

This is valid if the exchange corresponds to a pole in the complex-ℓ plane,
because for each exchange the contribution is the product of a coupling at each
vertex and a “propagator” corresponding to the other factors in the Regge
formula, including the power of s. Thus, for each term, the contribution
satisfies

σ(γγ) =
σ(γp)σ(γp)

σ(pp)
for all Q2

1, Q
2
2

For γγ we must add in the box graph

summed over the possible quark flavours in the loop. It is particularly impor-
tant when the energy is not very large.



In the case of real photons, the fits I have described for σ(γp) and σ(pp) yield
for σ(γγ)
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The experimental data are uncertain because of the need to make large ac-
ceptance corrections, and different models for calculating these lead to rather
different outputs, as is seen in the plot.

We may similarly calculate the charm component of σ(γγ):

 0

 10

 20

 30

 40

 50

 60

 70

 10  20  30  40  50  60  70√
s (GeV)

σ γγ → charm
(nb) OPAL

In each case, the blue curves are the hard-pomeron contribution. The box
graph is what causes the cross-section initially to fall with increasing W .



Photon structure function

When one photon is on shell and the other off shell, a similar calculation gives
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and when both photons are off shell
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Conclusion about Regge factorisation:
I’m not sure, the data are not good enough.



γp→ J/ψ p

Parametrise the amplitude as a sum of hardpom + softpom + reggeon ex-
change and adjust the relative contributions so as to fit the data for dσ/dt.
Because the Regge signature factor gives each term a different phase, the
resulting amplitude is not altogether simple. the result is
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The fit needs the hard pomeron slope to be quite small, perhaps 0.05. Inte-
grating over t, we find
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The blue line is from the hard-pomeron term alone. Why does the soft
pomeron couple to γp → J/ψ p but not to F c

2 ? The explanation may be
found in data from the Omega experiment (Physics Letters 68B (1977) 96):

p̄Cu → J/ψX

pCu → J/ψX
≈ 6

So the valence quarks of the beam couple to J/ψ: |cc̄〉 mixes with |qq̄ > and
the J/ψ is not pure cc̄.



Hard pomeron in hadron-hadron scattering?

Given that the hard pomeron exists, does it contribute to pp and pp̄ scattering?
Try including its contribution in the fits to the total cross sections. That is,
use hardpom, softpom and reggeon exchange:

σ(pp), σ(pp̄), σ(γp): σ = X0s
ǫ0 +X1s

ǫ1 +XRs
ǫR

F2(x,Q
2): x−ǫ0f0(Q

2) + x−ǫ1f1(Q
2) + x−ǫRfR(Q2)

The resulting fits, with

ǫ0 = 0.45 ǫ1 = 0.067 ǫR = −0.48

are:
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The blue lines are the hardpom contribution.



Extrapolate to LHC energy
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The lower line is the original fit with a hardpom contribution.

We have to worry about unitarity.

• We do not know how to do that!

We need to sum single-IP , double-IP , . . . exchanges:
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Although we know some general properties of these additional terms, we can-
not calculate them. The double-IP -exchange term has the general structure

AIP1IP2
(s, t) ∼ β(t) sαIP1IP2

(t)(log(s))−γ(t)

For linear trajectories,

αIP1IP2
(t) = αIP1IP2

(0) + α′

IP1IP2
t

αIP1IP2
(0) = αIP1(0) + αIP2

(0) − 1

α′

IP1IP2
=

α′
IP1
α′

IP2

α′
IP1

+ α′
IP2

But β(t) and γ(t) are unknown. Evidently, β(t) depends on information about
two-quark correlations in the proton wave function.



Eikonal model for pp scattering

This model has no theoretical foundation, but it produces multiple-exchange
terms of the correct general structure.

In the CM frame

p1 = (E,p + 1
2q) p3 = (E,p − 1

2q)
p2 = (E,−p − 1

2q) p4 = (E,−p + 1
2q)

with (p + 1
2
q)2 = (p − 1

2
q)2 so that p.q = 0 and therefore q is in the two-

dimensional space perpendicular to p. Also t = −q2.

Write the amplitude as a 2-dimensional Fourier integral

A(s,−q2) = 4

∫

d2b e−iq.bÃ(s,b2)

Ã(s,b2) =
1

16π2

∫

d2q eiq.bA(s,−q2)

b is called the impact parameter.

Define
χ(s, b) = − log(1 + 2iÃ/s)

so that
Ã(s,b2) = 1

2
is(1 − e−χ(s,b))

Remember the unitarity condition

Im aℓ(s) = |aℓ(s)|2 + inelastic terms

so that |aℓ(s)| < 1

One can show that this is satisfied if

Re χ(s, b) ≥ 0



Expand the exponential as a power series:

A(s,−q2) = 2is

∫

d2b e−iq.b(1 − e−χ(s,b))

= 2is

∫

d2b e−iq.b
(

χ− χ2

2!
+
χ3

3!
. . .− (−χ)n

n!
. . .

)

If first term is approximated by single-IP exchange, the second has the correct
general structure of double-IP exchange, etc. And one can then show that then
at very large s

σTot ∼ 4πα′ǫ0(log s)2

so the Froissart bound is satisfied.

But, although it has been widely used, this representation for the ampli-
tude has little theoretical foundation. For example, the double-exchange term
should contain information about the two-quark correlation in the proton’s
wave function, but this is not present in the term χ2.



pp elastic scattering

The fit to dσ/dt using just the two single pomeron exchanges and reggeon
exchange agrees well with the data at small t, but not at larger t:
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From its general structure, we know that IPIP exchange pulls dσ/dt down at
larger t.

But nobody knows how to calculate it!

As a simple model, calculate χ(s, b) as the sum of the three single exchanges
and take

Ã(s, b) = 2is
(

χ(s, b) − λ[χ(s, b)]2
)

together with a triple-gluon exchange term. Then repeat the fit, choosing λ
to get pp dips at the right t:
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Conclusion

The extrapolation to LHC energy is now the upper curve in
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The lower curve is the fit with no hard-pomeron contribution.

This procedure is highly model-dependent, so the error is inevitably large:

• σ(LHC) = 125 ± 25 mb


